【从零开始学架构 架构基础】二 架构设计的复杂度来源:高性能复杂度来源

架构设计的复杂度来源其实就是架构设计要解决的问题,主要有如下几个:高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键,就是新旧技术之间不是完全的替代关系,有交叉,有各自的特点,所以才需要具体问题具体分析,基于各方考虑设计合适的架构,存在合适的架构,不存在最好的架构。这篇主要讨论高性能问题

复杂度来源

软件系统中高性能带来的复杂度主要体现在两方面,一方面是单台计算机内部为了高性能带来的复杂度;另一方面是多台计算机集群为了高性能带来的复杂度
在这里插入图片描述

单机复杂度

单机的性能是基于操作系统体现的。提升单机性能的过程就是不断升级迭代操作系统能力的过程,操作系统和性能最相关的就是进程和线程

  1. 批处理生成指令清单解决手工操作输入慢的问题,但批处理任务在IO时CPU仍然空闲
  2. 多进程解决CPU分时复用处理任务的问题,但进程内的任务仍然串行,而实际上很多进程内部的子任务并不要求是严格按照时间顺序来执行的
  3. 多线程解决进程内任务并发问题,但仍然不是真正意义上的并行操作,本质仍然是分时复用

单机性能在设计升级中得到了提升,但同时也增加了系统的复杂度,例如为了支撑多进程多线程,需要设计互斥、锁、进程通信等策略

单机情况下要完成一个高性能的软件系统,需要考虑如多进程、多线程、进程间通信、多线程并发等技术点,而且这些技术并不是最新的就是最好的,也不是非此即彼的选择。这些技术的出现也是为了不断提升性能过程中解决实际问题发生的

集群复杂度

进入互联网时代后,业务的发展速度远远超过了硬件的发展速度,当单机的性能无法支撑时,必须采用机器集群的方式来达到高性能。但是机器集群又并不是简单的堆机器。

任务分配

任务分配的意思是指每台机器都可以处理完整的业务任务,不同的任务分配到不同的机器上执行
在这里插入图片描述
从图中可以看到,1 台服务器演变为 2 台服务器后,架构上明显要复杂多了,主要体现在:

  1. 需要增加一个任务分配器,这个分配器可能是硬件网络设备(例如,F5、交换机等),可能是软件网络设备(例如,LVS),也可能是负载均衡软件(例如,Nginx、HAProxy),还可能是自己开发的系统。选择合适的任务分配器也是一件复杂的事情,需要综合考虑性能、成本、可维护性、可用性等各方面的因素。 需要引入任务分配器
  2. 任务分配器和真正的业务服务器之间有连接和交互(即图中任务分配器到业务服务器的连接线),需要选择合适的连接方式,并且对连接进行管理。例如,连接建立、连接检测、连接中断后如何处理等。 需要对任务分配器与业务服务器进行连接管理
  3. 任务分配器需要增加分配算法。例如,是采用轮询算法,还是按权重分配,又或者按照负载进行分配。如果按照服务器的负载进行分配,则业务服务器还要能够上报自己的状态给任务分配器。 需要设计任务分配器的算法

如果我们的性能要求继续提高,并不是单纯加业务服务器就能解决问题,因为随着性能的增加,任务分配器本身又会成为性能瓶颈,单台任务分配器也不够用了,任务分配器本身也需要扩展为多台机器
在这里插入图片描述
这样复杂度也进一步升级

  1. 任务分配器从 1 台变成了多台, 这个变化带来的复杂度就是需要将不同的用户分配到不同的任务分配器上,常见的方法包括 DNS 轮询、智能 DNS、CDN(Content Delivery Network,内容分发网络)、GSLB 设备(Global Server Load Balance,全局负载均衡)等 复杂度升级:任务分配器之上还需进行用户分配
  2. 任务分配器和业务服务器的连接从简单的“1 对多”(1 台任务分配器连接多台业务服务器)变成了“多对多”(多台任务分配器连接多台业务服务器)的网状结构 复杂度升级:任务分配器与业务服务器网状连接,连接管理难度升级
  3. 机器数量从 3 台扩展到 30 台(一般任务分配器数量比业务服务器要少,假设业务服务器为 25 台,任务分配器为 5 台),状态管理、故障处理复杂度也大大增加。 复杂度升级:机器增加,分配算法复杂度升级

这个任务可以指很多场景的任务,例如“存储”“运算”“缓存”等都可以作为一项任务,因此存储系统、运算系统、缓存系统都可以按照任务分配的方式来搭建架构。此外,任务分配器也并不一定只能是物理上存在的机器或者一个独立运行的程序,也可以是嵌入在其他程序中的算法 例如kafka集群(zk集群作为任务分配器)、Redis集群(哨兵集群作为任务分配器),ES集群(候选主节点+协调节点+逻辑主节点联合作为任务分配器),都能抽象为类似的设计

任务分解

通过任务分配的方式,我们能够突破单台机器处理性能的瓶颈,通过增加更多的机器来满足业务的性能需求,但如果业务本身也越来越复杂,单纯只通过任务分配的方式来扩展性能,收益会越来越低。 水平扩容解决系统性能瓶颈的能力随着业务复杂度边际收益逐渐降低 ,这个时候需要任务分解
在这里插入图片描述
通过这种任务分解的方式,能够把原来大一统但复杂的业务系统,拆分成小而简单但需要多个系统配合的业务系统。从业务的角度来看,任务分解既不会减少功能,也不会减少代码量(事实上代码量可能还会增加,因为从代码内部调用改为通过服务器之间的接口调用),其提升性能的优势体现在:

  • 简单的系统更加容易做到高性能,系统的功能越简单,影响性能的点就越少,就更加容易进行有针对性的优化
  • 可以针对单个任务进行扩展,当各个逻辑任务分解到独立的子系统后,整个系统的性能瓶颈更加容易发现,而且发现后只需要针对有瓶颈的子系统进行性能优化或者提升,不需要改动整个系统,风险会小很多

总而言之就是 按业务逻辑进行任务隔离,精细化进行任务性能提升,性能瓶颈更容易被发现,优化和扩展更加容易,改动也不会影响其它模块,降低系统风险

但也不是越细越好,任务分解带来的性能收益是有一个度的,并不是任务分解越细越好
在这里插入图片描述
最主要的原因是如果系统拆分得太细,为了完成某个业务,系统间的调用次数会呈指数级别上升,而系统间的调用通道目前都是通过网络传输的方式,性能远比系统内的函数调用要低得多

总结一下

性能差-》提升设计复杂度解决性能问题-》掌握如何编码和集群架构cover复杂的设计。高性能复杂度有单机和集群来源。单机主要通过操作系统(多进程、多线程)设计来压榨机器CPU进而提升性能,其设计复杂度体现在需要实现互斥、锁、进程通信等策略,所以要掌握并发编程技术。集群主要是搭建机器集群来扛住大的业务增量,其设计复杂度体现在任务分配(任务分配器、任务分配器与业务服务器连接管理、任务分配算法,其解决系统性能瓶颈的能力随着业务复杂度边际收益逐渐降低)和任务分解(业务逻辑垂直拆分,单项扩展或升级,其系统拆分带来的收益会随着系统间调用延迟边际降低),所以要掌握任务分配和任务分解的最佳实现模式。架构设计是取舍,是对度的把握。

相关概念

关于学习笔记中的相关知识补充

进程之间通信方式 管道、消息队列、信号量、共享存储

进程间通信(Inter-Process Communication,IPC)是在不同进程之间交换数据的机制。这对于多任务操作系统中的进程协作是非常重要的。常见的进程间通信方式包括管道、消息队列、信号量和共享存储,每种方式都有其特点和适用场景:

  1. 管道(Pipes)

    • 管道是最早的UNIX IPC形式之一,主要用于有血缘关系的进程(如父子进程)之间的通信。它是单向的,数据只能单向流动。如果需要双向通信,则需使用两个管道。
    • 管道分为匿名管道和命名管道(FIFO)。匿名管道在进程间临时创建,不能用于没有共同祖先的进程间;而命名管道可以在文件系统中以文件形式存在,支持没有关联的进程间通信。
  2. 消息队列(Message Queues)

    • 消息队列允许一个或多个进程向其发送消息,并由一个或多个进程读取。消息队列具有存储消息的能力,直到它们被接收。
    • 与管道不同,消息队列不需要以流的形式进行通信,而是以消息为单位发送接收,这有助于避免数据的边界问题。
  3. 信号量(Semaphores)

    • 信号量主要用于同步多个进程的执行,而不是直接的数据交换。它可以防止多个进程同时访问共享资源。
    • 信号量包括二值信号量(也称为互斥锁)和计数信号量。二值信号量用于实现互斥,即在任意时刻只允许一个进程访问资源;计数信号量则允许多个进程同时访问资源的某个固定数量的实例。
  4. 共享存储(Shared Memory)

    • 共享存储允许多个进程访问同一块内存区域。它是最快的IPC方式,因为数据不需要在进程间复制,直接在内存中共享。
    • 使用共享内存时,通常需要结合信号量来同步对共享内存的访问,以避免竞态条件和数据不一致。

根据应用程序的特定需求和上下文,开发者可以选择最合适的进程间通信方式。例如,对于需要大量数据快速传输的应用,共享内存可能是最佳选择;而对于需要跨机器或模块化通信的系统,消息队列或命名管道可能更适用。

SMP、NUMA和MPP

SMP(Symmetric Multi-Processor,对称多处理器结构)、NUMA(Non-Uniform Memory Access,非一致存储访问结构)和MPP(Massive Parallel Processing,海量并行处理结构)是三种不同的计算机体系结构,它们都旨在通过使用多个处理器来提高性能,但各有其特点和应用领域:

  1. SMP(Symmetric Multi-Processor,对称多处理器结构)

    • 在SMP架构中,两个或更多的处理器共享同一主内存和I/O总线等资源。这种结构的处理器对于内存和其他资源具有平等的访问权,处理能力基本对等。
    • SMP架构简化了数据的共享,因为所有处理器都直接访问同一内存。它通常用于通用服务器和多任务处理,适合执行多线程程序。
  2. NUMA(Non-Uniform Memory Access,非一致存储访问结构)

    • 在NUMA架构中,每个处理器或处理器组都有自己的本地内存,处理器访问本地内存的速度要快于访问远程(其他处理器的本地)内存。
    • NUMA能够扩展更多处理器,是解决SMP扩展性限制的一种方案。适用于内存访问模式较为复杂的大型多处理器系统,如大型数据库系统。
  3. MPP(Massive Parallel Processing,海量并行处理结构)

    • MPP是一种分布式内存架构,每个节点(处理器)都有自己的操作系统和内存,节点间通常通过高速网络互联。
    • 这种架构适用于处理大量计算密集型任务,如大数据分析和科学计算。MPP可以实现极高的并行度和扩展性,但程序需要特别设计来管理数据分割和任务分配。

各种架构的选择取决于应用需求、性能要求和成本考量。在处理并行计算和复杂数据处理任务时,理解这些基础架构对于设计和优化系统至关重要。

硬件网络设备:F5和交换机

"F5"和"交换机"都是网络设备,但它们的功能和应用场景有所不同。二者的区别

  • 功能焦点:F5主要关注于应用层面的负载均衡和安全,而交换机主要关注于网络内部的数据传输和连接。
  • 应用层次:F5设备一般工作在更高的网络层次(第4层至第7层),提供针对应用数据的智能处理;交换机通常在第2层,简单地处理数据帧的转发。
  • 企业应用:F5更多出现在需要高度网络安全和应用性能的企业级应用中,交换机则是任何网络环境中不可或缺的基础设备。

根据网络设计的需求和特定的功能需求选择合适的设备非常重要。F5设备在确保应用交付和安全方面非常有效,而交换机则是实现网络互联的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/631912.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FestDfs快速安装和数据迁移同步。Ubuntu环境

一:防火墙 ufw status 二:下载 分别是(环境依赖,网络模块依赖,安装包) git clone https://github.com/happyfish100/libfastcommon.git git clone https://github.com/happyfish100/libserverframe.git …

package-lock.json导致npm install安装nyc出现超时错误

一、背景 前端项目在npm install安装依赖,无法下载组件nyc,详细报错信息: npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/nyc/download/nyc-13.3.0.tgz?cache0&a…

析构函数详解

目录 析构函数概念特性对象的销毁顺序 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒 个人主页 🥸🥸🥸 C语言 🐿️🐿️🐿️ C语言例题 &…

开源标注工具LabelMe的使用

开源标注工具LabelMe使用Python实现,并使用Qt作为其图形界面,进行图像多边形标注。源码地址:https://github.com/labelmeai/labelme ,最新发布版本为v5.4.1,它遵循GNU通用公共许可证的条款。 1.Features (1).多边形、矩形、圆形、…

Linux下mysql备份

参考文章: Linux实现MySQL数据库数据自动备份,并定期删除以前备份文件-CSDN博客文章浏览阅读7.2k次,点赞7次,收藏29次。引言在学习过程中遇到了一个问题,见图:当我进入服务器的数据库时,原来的…

羊大师:羊奶健康的成长伴侣

羊大师:羊奶健康的成长伴侣 在追求健康生活的当下,越来越多的人开始关注饮食的营养与健康。羊大师发现在众多天然食品中,羊奶以其独特的营养价值和健康益处,逐渐成为了人们的新宠。特别是对于正在成长发育的孩子们来说&#xff0…

客户端Web资源缓存

为了提高Web服务器的性能,其中的一种可以提高Web服务器性能的方法就是采用缓存技术。 1.缓存 1.1.什么是缓存? 如果某个资源的计算耗时或耗资源,则执行一次并存储结果。当有人随后请求该资源时,返回存储的结果,而不是再次计算。…

免费视频格式在线转换网站,推荐这5款!

在数字化时代,视频已成为我们日常生活和工作中不可或缺的一部分。然而,随着各种设备和平台的不断涌现,视频格式繁多,常常会出现不兼容的情况。为了解决这一问题,视频格式在线转换网站应运而生,成为了我们应…

【数据结构】排序(归并排序,计数排序)

一、归并排序 基本思想: 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列&#xf…

百度百舸 AIAK-LLM 的大模型训练和推理加速实践

本文整理自 4 月 16 日的 2024 百度 Create 大会的公开课分享《百舸 AIAK-LLM:大模型训练和推理加速实践》。 今天要分享的主题是 AI Infra 相关的内容,主要内容分为四部分。 首先和大家一起讨论大模型给基础设施带来的挑战。第二部分则是向大家介绍一个…

力扣HOT100 - 32. 最长有效括号

解题思路&#xff1a; 栈 class Solution {public int longestValidParentheses(String s) {int max 0;// 也可以使用 Stack<Integer> stacknew Stack<>();但Stack是遗留类&#xff0c;不推荐Deque<Integer> stack new LinkedList<>();stack.push(…

犀牛Rhinoceros 8创建、编辑、分析、记录、渲染、制作动画和转换

Rhino - 多功能 3D 建模器。 Rhinoceros 可以创建、编辑、分析、记录、渲染、制作动画和转换 NURBS* 曲线、曲面、实体、点云和多边形网格。除了硬件之外&#xff0c;复杂性、程度或大小没有任何限制。 特殊功能包括&#xff1a; -不受约束的自由形式 3D 建模工具&#xff0c;…

【汇编】算术指令

一、加法指令 &#xff08;一&#xff09;各加法指令的格式及操作 加法指令可做字或字节运算 &#xff08;1&#xff09;加法指令 ADD 格式&#xff1a;ADD DST,SRC执行的操作&#xff1a;(DST) ← (SRC)(DST) &#xff08;2&#xff09;带进位加法指令 ADC 格式&#xf…

ENZO--Leptin (human) ELISA kit

瘦素(Leptin)是由ob基因编码、在脂肪组织中生成的一种脂肪代谢调控产物&#xff0c;在代谢和调控体重等方面发挥重要作用。它通过下丘脑中的瘦素受体发出信号&#xff0c;降低食欲&#xff0c;增加能量消耗。在外周组织中&#xff0c;瘦素能拮抗胰岛素信号传导&#xff0c;增加…

目标检测标注工具Labelimg安装与使用

目录 一、安装Labelimg与打开 二、使用 1、基本功能介绍 2、快捷键 3、状态栏的工具 4、数据准备 5、标注 三、附录 1、YOLO模式创建标签的样式 2、create ML模式创建标签的样式 3、PascalVOC模式创建标签的样式 一、安装Labelimg与打开 源码网址&#xff1a;Label…

前端通知组件封装

背景 实现如上图效果&#xff1a;点击小铃铛&#xff0c;从右侧展示通知&#xff0c;点击其中一条跳&#xff0c;转到一个新页面&#xff1b;小铃铛数目减少&#xff1b; 实现 index.vue <template><el-drawerv-if"visible":visible.sync"visible&…

C#知识|上位机子窗体嵌入主窗体方法(实例)

哈喽,你好啊,我是雷工! 上位机开发中,经常会需要将子窗体嵌入到主窗体, 本节练习C#中在主窗体的某个容器中打开子窗体的方法。 01 需求说明 本节练习将【账号管理】子窗体在主窗体的panelMain容器中打开。 账号管理子窗体如下: 主窗体的panelMain容器位置如图: 02 实现…

【找到所有数组中消失的数字】leetcode,python

很菜的写法&#xff1a; class Solution:def findDisappearedNumbers(self, nums: List[int]) -> List[int]:nlen(nums)#存1-Nnum_1[i for i in range(1,n1)]#预存数num_2[]nums.sort()for i in nums:num_1[i-1]0for i in num_1:if i!0:num_2.append(i)return num_2能过但是…

计算机毕业设计hadoop+hive+hbase学情分析 在线教育大数据 课程推荐系统 机器学习 深度学习 人工智能 大数据毕业设计 知识图谱

毕 业 设 计&#xff08;论 文&#xff09;开 题 报 告 1&#xff0e;结合毕业设计&#xff08;论文&#xff09;课题情况&#xff0c;根据所查阅的文献资料&#xff0c;每人撰写不少于1000字的文献综述&#xff1a; 一、研究背景和意义 “互联网”和大数据带来了网络教育的蓬…

Java入门——异常

异常的背景 初识异常 我们曾经的代码中已经接触了一些 "异常" 了. 例如: //除以 0 System.out.println(10 / 0); // 执行结果 Exception in thread "main" java.lang.ArithmeticException: / by zero //数组下标越界 int[] arr {1, 2, 3}; System.out.…